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Abstract

In this papar, a number of extenzions of a recent theory for the estimation
of stock abundance by encounter rates are presented. These extensions include
non-Bayesian confidence intervals, multiple and unknown detection rates,
learning by the fisherman, and clumping of the stock. In some of the cases,
the extended ti-ary is ifllustrated by applicatioﬁ to a data set.
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INTRODUCTION

Abundance estimation - either absolute or relative abundance - is often an
important part of natural resource management. Many techniques are described by
Seber (1982). This paper is concerned with téchniques which do not require
explicit surveys (ruling out, for example transects, mark-recapture, or
telemetry). The canonical example is the management of a fishery in which one
tries to ménage the fishery based on catch data. The traditional models based
on aggregate catch and effort often do not captﬁre the operational reality of

. fishing and failure of catch/effort management schemes is well known.

Recently (Mangel and Beder, 1985), a method for estimating stock abundance
and predicting catches based on encounter rates was described. The method was
successfully applied to a study of Pacific Ocean perch in Rennell Sound, British
Columbia. The purpose of this paper is to extend the analysis presented in
Mangel and Beder (1985) in a number of directions. These extensions will make
the theory applicable to a much wider variety of bperational situations in
fisheries and wildlife. For example, although the theory presented here was
developed for fisheries, it can be used just as effectively in wildlife studies

(and will be used for analysis of data on porcupines in the Negev desert).

A brief review of the theory of Mangel and Beder (1985) is the following.

It is based on two fundamental assumptions. These are:
1. Schools of fish are cohesive, identifiable units.
2. Given that n schools have already been fished and removed, the
probability of encountering another school in the next At search
time units is given by (A-ne)At where ) is unknown and e is a

paracater given in terms of operaticnal variables.

The parameter ¢, which will be called the search parameter, is characterized

by e = Wv/A whsre W is the sweep width (Koopman 1980) of the search device,
v Is the speed of the vessel and A is the area being searched. In some cases
these parameters will be known at a reasonable level of confidence: in other

cases there may de multiple e's or they may not be known at all. It is these
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“latter cases which motivate this work. The two assumptions lead to a binomial

distribution for the ca%ch:

Pr{catech k schools in t units of search tima}

{1)
X
-——k
- [lﬁe] (1-e'5t)k (e ct)e

The value A/e = N can be interpreted as the number of schools initially
present. Given a set of data consisting of the time ‘1‘1 needed to find the

th

17" school and the size of the ith school (a proxy being the catch in the ith

school), one can compute maximum likelihood estimates for the numdber of schools
(N) and the biomass per aggregate (Bﬁ). Mangel and Beder (1985) also describe

a means for calculating Bayas confidence intervals for bicmass and the number of
schools. They 2130 show how one can use the theory to predict future catches

given total effort (TE).

The purpose of this paper is to extend the basic theory in a number of
directions. In ths next section, the case of varying search capabilities
(multiple values for ¢) and stock aggregation are treated. The third section
treats the case of sinultaneous estimation of the search parameter and N. The
work presented in this section extends that of Allen and Purisly (1984), or Reed
(1984) and has much in common with Carroll and Lombard (1983), Schnute (1983)
and Littlewood and Sofer (1985); The fourth section treats the case in which
the search parameter changes due to learning. Finally, the fifth section is

concerned with rnon-Bayasian biomass estimztes.

VARYING STARCH CAPABILITIES AND STOCK AGGREGATION

In this s=2ction, two extensions of the basic model (1} are presented. The
first ext2nsion iavolves cases in which there may be more than one value of the

search paramster. Recall that
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where W 1is the (detection) sWeep width (Kobpman 1980, Mangel 1985), v is the
speed of the vessel while Searching, and A is size of the region being
searched. The sweep width usually depends upon environmental considerations.
There are numerous situations in whicn considerably different sweep widths could
arise, but one specific exanple concerns the sighting surveys for whales in the
Southern hemisphere. In that case, the mechanism of detection is visual and the
sweep width W depends strongly on the sea state and visibility conditions.

The U.S. Coast Guard publishes tables that give W as a function of
environmental conditions. In general, one can envision a number of situations
in which encounters occur under considerably different environmental conditions

(e.g. visibilities) and one does not want to lump all of the data together.

The second extension deals with aggregation or clumping of the stock - how
should the analysis be modified if the stock is known to be highly aggregated?

Multiple Search Parameters

For the purposes of analysis, the data now consist of pairs (ni. ti} where

ni is the number of aggregations encountered in search time ti when the

search parameter is €5~ Assume that there are j classes for the search

parameter.

In the sequel, it helps to set

(3)

where
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and vy is the vessel speed when the sweep width is Hi.
Assuming Independence of captures, the likelihood of a value of N,
denoted by L(N), given the data set {ni’pi} for {i=1,...5 1is
1-1
N- [ nk n i-
. - - E -
LNy = o1 [ K1 yp tq ¥ Ty (5)
i i k=1
i=1 -nI

0 -
with the understanding that [ = 0. The MLE N for N is found by setting
1 ' B

L{N+1) .
T(N—)—-=1 : _ _ | - (6)

which gives the equation

J i=1 j J i
o {N+t - X 0, noq = 1 (N+y - £ ni). (7)
i=1 k=1 1=1 i=1 k=1

~

The solution of (7), subject to integer values of N, is found after sone

algebra to be

N = INT —_— -1 _ (8)

where 1INT(x) is the integer part of x. Equation (8) is a natural

generalization of the case of a single search parameter. tote that the estimate
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for N depends only upon the total number of encounters n = § n, and the
: i=t -
parameter
] -
Q ~expi- ¥ e.t,} (9)
f=1 i1 :

which is a measure of total search effectiveness,

In addition to the MLE estimate N, it is good to have an idea about the

distribution of ﬁ. Mangel and Beder (1985) used a Bayesian approach and showed
that the posterior distribution for N when the prior was uniform was virtually
the same as the posterior distribution using the noninformative prior
distribution. If g(N[(n,t)) denotes the posterior distribution on N when
the data are (n,t) = (nl;"'"j' t‘,...tj) and one assﬁmes a uniform prior
distribution, then the posterior distribution is

g{nj(n,t))} - *—EL(E%-,H— for N>n (10}

N=n

where L(N) 1is given by (5). In order to compute (10) the following {dentities

are useful

) (*P) - e 0T

p ptrr
(11)

t (M) *P . (1-q)7P
M=p

Thus, the dencminator In (10) is given by



g n, ~ 1 Ia,
] n, 3 fop b i=1 k=i%1
I L(N}Y = @ p; 1- 01 q. : L
N=n i=1 i=1 ') i=1
] (12)
i+
In
31 k=t ¥
I i
I=1 - nk
k=1
Combining (5) and (12) shows that the posterior distribution is
N 41 _N-
g(v[(n,0)} = (V) (1-™7 "™ (13)
J
where, recall n= I ni is the total catch and Q is given by (9).
i=1

To close this section, it is worthwhile to consider the distritution of the

number of remaining schools Y. To find it, note that

J
Y= N- I nj s0 that
’ i=1
(14)
b
Pr{Y=y} = PrfN = y + ¢ ni}
Thus, if one sets
3
r = -E ng o+ 1 and p = 1-Q (15)
i=t
it foliows frona (13) that
+ r-}
pr{yay} = (Y " 7)) p" (1-p)Y (16)

Y
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S0 that the number of remaining schools has 2 negative binomial distribution.

Aggregation or Clumping of the Stock

It is commonly observed that many stocks aggregate (the conditional
probability of a school being present increases as if another school is
present). For the purposes of modeling, aggregation usually means that the
variance of the catch rate exceeds the mean - sometimes by a 1argg amount. One
way of modeling such a situation is to assume that the catch rate, conditioned
on A, Is a Pcisson process with parameter A. If A has a Eamma density with

parameters v and a, 80 that

-al v _v-1
o

e X
i) - )

a7

then the unconditional distribution of the catch rete, C, 1is negative binomial
with nean and variance given by

EfC} = =

(18)
(2)?

Var{C} > ™

r oy,
o
(see Mangel 1985 for details).

This approach cannot be used here, since the underlying Poisson model does
not include depletion. However, the Beneral idea can be used. That is, assume
now that the binomial distribution '

Pri{n schools caught in search time ¢t}
(19}

A
L _q
. [l/e} (1-e et)n ( -et)e
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is 2 conditional distribution of the cateh, given . If ) has the gamnma
density (5%), taen the unconditional probability of the cateh is (Hangel and

Clark 1933, Mangél 1985).

Pr{n schools caught in search. time t} = pn(t.v,u)

{20}
1 et.n ent o n A(j,n) I (j+v,(a+t)en)
= (l-e "} e L 2
n! F{v) j=1 Ej (a*t)‘jh’

where TI'(p,x) 1is the incomplete gamma function (Abramowitz and Stegun 1965}
Flu,x) = I: e ® ¥ gs (21)

and the constants A{j,n) satisfy the following recursion formulas

A{n,n) = 1
A{k,n+1) = a{k-1,n) -~ na{k,n) k=2,3,...n-1,n (22}
A(1,n#*1) = -nA(l,n)

Furthermore, if A has the gamma density (17), the coefficient of
variation of 1 is 1//v. That is, the "level of aggregation” is determined
solely by v. This suggests that one can fix v by comparison with the same
species In different regions or similar species in the same region. If v is

Fixed this way, and € is assumed to be known, the Pn(t,v,a) ¢an be viewed as
the likelihood for «, given n and t. The derivative of Pn(t,v,u) is

easily computed; setting it equal to zero shows that the MLE for e must

satisfy ﬁhe eguation
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V! ; AG.n)  T(j*v, (c:+t)nc}
$u1 & (ert) 3™V
uv 2 A(jsn) { J*V F(j+v (a+t)n )
- . c
- e ae)TVT

-¢~la*tine (nE)J+v+l}

The solution of (23) is easily found numerically. It is actually more

{23)

Instructive, however, to plot the likelihood (23) over a range of values of .

As an example, consider the Pacific Ocean perch data used in Mangel and
Beder (1985) (these data are deseribed in detail in tne Appendix). They are

n =13
= 181 hrs
v =1,0

(24)

Figure 1 shows the likelihood Pn(t.v,u) over a wide range of a. The MLE

F

is « = 14, giving
v
E{)} = ol 0714

and since

E{N} = E{)/¢},

(25)

(26)

the MLE for N =« 714 aggregations - similar to the value 646 reported by Mangel

and Bader (1935). Note, too that the peak in Pn(t.u,u) is rather broad.

If

a and “_are the values of o at which the likelihood is 907 of its maximum

+

value, then

(27)
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showing the broad range of a, and thus N, when stock agzregation is

included.

SIMULTAHEQUS ESTIMATION OF N AND THE SEARCH PARAMETER

Consider now the situation in which there is only one value of ¢, but it
is unknown so that one is simultaneously estimating N and ¢. The easiest
approach would be to use moment estimators which, it turns out, correspond with
the methods of Leslie (1952) and DeLury (1947, 1951) for estimating stock

abundance. That is, consider a sequence of "pariods® (e.g. weeks) and let Hi

denote the harvest in period i. From (1), one has

BlH 1, for  §=1,...1-1]
(28)

eti i
={1-e ') (- 1 K, )
3=

where ti is the search time in period i. This search time is actually

related to the catch if the total effort is fixed (see Mangel and Beder 1985 pg.

160, equation (5.5) and the subsequent discussion). For simplicity, define k
-eti

and Ei by 1-e = kEi wWnere Ei is the "effort" in period i and k is

a constant. If CPUEi is the expected harvest in period i divided by Ei’

then

i
CPUE, = K in - ¢ Hi} (29)
J=1

Equatior {25} s set up for Leslie's method: one regresses the observed CPUH1

against

LU = BT

Hi and obtains moment estimators for N and k. bPelury's method
1 .
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is obtained by 3caling time on the original assumptions so that one deals

essentially with a continuous harvest process.

Tne methods of Leslie and DeLury can be very unstable. For example, if the
data used in the regression related to (29) are quite neisy -- and thus do not
show a pronounced decline with increasing pertods -- one can obtain negative

estimates for k or N.

The solution to this problem is to try a maximum likelihood approach as
well. But, in order to do this, more information is needed than is included in
the binomial likelihood (1). To see this need, rewrite (1) as a likelihood

LiNe) = (V) (1-eTER (oTetyN (30)

£

If p= 1-e t, {30) becomes

L(N,p) = [g] " (1-pyt 0 o (31)

Since L(N,p) <% and L(n,!) = 1, the MLEs are N=n, p=1 and these are

elearly unsatisfactory.

The needed additional information involves the individual search times.

That is, by assunption if Ti is the time needad to find the ith aggregation,

then Ti has an exponential distribution with parameter Ai-e(i-1). Thus, the

likelinood £({7.}} of a set of discovery times Tys-+-sT, is given by

n-1 -{i-ie)T
27,1} = © (a-1e)e i1
{32)
n-1 —(N—i)eTi+

= N (N-i)ee !
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where i = M/e. Tt can be shown that the likelihood (32) does not yield
satisfactory estimates of e and N either (that is, (32) gives N = n).

Satisfactory estimates of ¢ and K can be obtained by an extension of

(32) that proceeds as follows. Augment the data set T, by the-time S since

the last aggregation was found. The augmented likelihood .g([Ti}, S] is

(33}

n-1 =(N-1)eT, e
S[iTil. S} =) 1 (N-i)ee 1+1 e (Nn)es
i=0

(This likelihood, remarkably enough, arises in the theory of computer software
reliability - see Joe and Reid 1985, Littlewcod 1981 or Littlewood, Chaly and
Chan 1985 and the references therein.) The MLEs derived from (33) are

n

= 1
£ = (34)

(N-n)S + = (K-1)T,,,
. 1=0

and where N is the MLE for N and satisfies the following equation

n-1

1
0 = F(N) = _I 1
i=0
(35)
n-t
-n{ £ T, + NS)
i-0 i+
n-1
(K-n)s + (N-D)T,
i=0

If F(R) is such that F'(N) is bounded away from zero near the MLE, then (35}

can be efficisnily solved using Newton's method. As an example, consider the

following data on Pacific ocean perch (see Appendix 1 for more details)
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i li (hrs.)

Y

13.9
4.0
4.5
5.6
1.3

11.7

31.5

22.6

19.1

16.5
5.0

30.3

23.1

W =~ o o owN

ettt
L e =)

The value of $ is not known, but one can parameterize the MLEs by S. Results

of computations are shown in Table 1. The results are in accord with intuition:
as S5 grows, N decreases (on=2 expaets, in fact, that N+ n as S » =) ang
€ increases. Perhaps somewhat unzxpected is the relative consistency of N e.

oo~

Note that N & 1is the estimate for the ihitial catch rate (and (¥ - n)e for

the catch rate after catehing n aggregations).

In numerical experimentation with other data sets, it has turned out that
the likelihood (33) is quite flat, so that the Newton iterates for the MLE aidq
not converge well. In cases sugh as those, the following procedure seemad to

work well. To bagin, fix a maximunm possible value of g, €y determined on

the basis of external considerations. Now, if ¢ is fixed the MLE for N

derived from (33) satisfies the eguation

I o = g(T + 3) (36)
P

-

1

where T = I T, is the total search time.



TABLE 1
“iks for N and e wusing Pacific Ocean Perch Data
S (hrs) K

-y

5 385 2.1 x 10
-y

10 199 4.1 x 10
15 137 5.8 x 107
20 106 7.5 x 10}
25 87 9.0 x 107"
30 75 1.0 x 10"
4o 66 1.3 x 107"
50 51 1.5 x 1073
60 5 1.7 x 1073
70 . 1.8 x 1073
-3

80 33 1.9 x 10
90 36 2.0 x 10 0
100 34 2.1 x 1073

N and e reported above azre rounded values; N £ 1is computed

rounded values.

_15_.

e
0814
.0806
0799
.0793
0786
0780
0763
0753
L0748
0738
-0728
L0718

from the pre-
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This equation is easlly solved for | by setting
n=-i 1 :
F(B) =0 = I —— « ¢(T +58) (37)
{=0 h-1i

The advantage in using (37) over (35) is that the derivative F'(H) of (37) is
bounded away from zero more than the derivative of (35) - that is, the
likelihood is not as flat. Thus, the following algorithm was used. First, rix

€ S_eM, find the MLE N from (37) and evaluate the log-likelihood

-~ n"“ FS ~ ~
L= I logl(e} + log(N-i) - a(N-I)TI+1 - €(N-n)s (38)
i=0

- -~

The log-likelihood in (38), L, is really a function of & too L(e) and the

idea is to choose the ¢ L ey (say by simple search) that maximizes L(e).

As an example, consider th= following data on the crested porcupine,
Hystrix indica (see the appendix for details of the data collection).

Porcupines were trapped, marked, and released. Because they were narked, it is

as il the porcupines were removed from the population. Table 2 shows data on

the time required to trap the ith porcupina, Using the previcusly described

algorithm, a maximum value of €&y " .00t was picked. the values of the log-

likelihoed for various values of ¢ ans the MLE N(e) are shown in Table 3.

The extrens flztness of the log-likelihood function is seen in this table. The

HMLE Nf{z) with the largest log-likelihood is 60 porcupines, with a
corresponsting : = .00048. Other estimates for the population level gave about
50 porcupines {F, Alkon, personal communication). These two estimates are thus

in relativelv gosd agreenent.
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TABLE 2
~ Porcupine Trapping Data

Capture Number, i Eg._ (trap nights)*
1 3
2 1
3 7
4 5
5 L
6 6
7 2
8 b
9 8
10 3
11 i1
12 2
13 2
14 6
15 2
15 2
17 10
18 2
19 4
20 2

¥ One trap nignt {the unit of effort) is nominally 8 hours.
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TABLE 3

N(e) and Log—Likelihood for the Porcupingz Data

E

.001
.0009
.0008
.0007
.0006
.0005
.00048
.00042
.00036
.00032
.00024

=7

37
39
42
L6
52
55
60
66
T4
By
99

S

Log-Likelihood

-92.92
-92.82
-92.73
-92.65
-92.55
-92.56
-92.53
-92.54
-92.55
—92.63
-92.75
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In nany situations, unfortunately, one will not nave individual search
times, but will have aggregated data. For example, assume that ths data consist

of pzirs (ni,ti) where ng is the number of schools encountered in period i
with total search tinme tif For a situation like this one, the following new

model (which is 2 Poisson approximation) is a good one. Assume that in the Ith

period, the catch follows a Poisson distribution with parameters

i-i
A, et {(N- £ n). (39)
i T B N

Thus, the likelihood of a set [ni] is

e 1 lini _
L= b . (40)
i
i-1 _
Setting Ci = 7 n, to be the catch up to period 1 and using (3%3), the log-
K=1

likelihood L 1is

L=1IL~-¢ Y (N - ci) + log(ni!)

(M)
+ ni[log(s) + log(ti) + log(N-Ci)]
Setting the derivatives of (41) equal to zero gives
Ry
£ =1 - ti(N“ci) + (42)
Ny
0= -t + (43)

i N-c
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Soiving (83) for Zives

(4%)

where t = § ti is the total search time. Using (43) in (82) gives a single

equation for K:

Nt - Lt ¢ = —— (45)

Where n =L ni is the total catch. This equation is easily solved for N by

an iterative scheme such as Newton's method.

As an example, consider the following data, pertaining to Sardinella
maderensis, Sardinella aurita, Scomber jeponicus and Brachideuterus auritus off
the Ivory Coast (Cury and Roy, 1985a,b). Search times and catch data are given
in two weak blocks, and geographically divided into 8 zones. Each fortnight
can o2 identified as one period. Based on empirical observation (P. Cury,
personal communication), it was decided to a2ssume that school required three

sets. Data for thne first five fortnights in 1966 in zone X are shown below

Period Ti (hrs) Catch (tons) fi
1 216 119 11
2 2280 594 ' 85
3 3312 ' 1133 102
4 . 206h 370 543
5 1008 322 57

ines2 ZJata give zn average of 8.5 tons/school. Using these data in (4i) and

(45} gives estizates for N and ¢
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X = 5871
(46)

£ =5.8 x 10-6

note that predictions based on the Poisson approximation are actually quite

simple. For example, if Nc is the best current estimate of N, the expected

catech given a future search time s is:
Efcatch | s} = ¢ NS (47)

In addition to the mean, one is interested in the range of possible catches.
This can be found by summing the Poiason distribution to encompass as much of
the total probability as desired. (This idea roughly corresponds to a

confidence interval).

The next five search times in the data of Cury and Roy are T6 = 1608 hrs,

T7 = 600 hrs, T8 9 10

one can compare the actual numbzr of schools encountered With the expected

= 508 hrs, T, = 360 hrs, and T., = 1008 hrs. Using these data,

number and with the range corfesponding to 90% of the summed probability. These

compar isons are shown below

Period Number of Schools Encountered
Actual Expected Range for 9G% of the Probability
6 53 55 (43,67)
7 23 20 (13,27)
8 22 17 (10,24)
9 13 2 (6,18)
i by 34 (24,44)

The approximatiss szems to work reasonably well. Other tests, using both the
Ivory Coast data and additional data on tuna in the South Pacifie, are currently
underway. The zeneral situation which is arising from the results reported here
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and the additional work is the following one. The simultaneous estimation of £
and N from a relatively limited data set is difficult because of the limited
information {n the data (for example, low ¢ and high N versus nigh & and
low N may be virtually indistinguishable). The problem of trying to extract
too much information from the data-is, esseﬁtially, the source of the
instability of the Leslie and DeLury methods. One should‘tby td determine €

by other means, such as the operational definition given early in the paper.

LEARNING BY THE FISHERMAN

]

There are many operational situations in which learning by the operator is
imbortant. In this paper, learning will be characterized as follows. Recall
the definition that € = Wv/A. In order to model learning, let A Ee a
decreasing function of search time t. That is, learning is summarized by a

reduction in the area searched. Three possible models are

At) = /1 + 0 ¢

Ale) = Aoe'et (43)
A (1-0%) A <'l
0 )

ACt) = o
0 t>5

(Another possibility is that the area searched depends not only on the elapsed
search time, but also on the current catch; A = A(t,n)). Now, fundamental

assumption (2) is equivalent to

Pr[another discovery in next dt units of search
time|n discovered in the first t units (49)
of search time} = (N-n)e dt

Wnen learning is included, (}-n)e in (49) is replaced by (M-n)e(t). It is

easily verified that the probdability density for the time until the i%h

detection is
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.th | .
qi(ti) dr = Pr[:.t cetection oz2curs in the interval (ti’ ti + dt)]

(50)

—

- e(t)) (B-¢i-1)) exp § -(u-(i-1)) 7 P els) ds § at
T
i—-1

vhere 7T is the total elapsed search time for the first 1{-1 detections.

i-1

For example, consider the first of the three models in (48). Then

qi(s) = %3 (1+0s) (N-Ci-1) Jexp & -{N-(i- 1)] L {s + —-(s + 2?£-15)] (51)
0 0 _

-~

For a given set of discovery times {T1,...|n}, the likelihood is now

n-1 Wy Wv
g({T.}) = & - (0T, ) (H-tdexp { ~(¥-1) I¥
* i=0 "o 0
(52)
i-1
- 9 (.2 -
[T+ 3 (75, + 21y, E 7))
k=0
and the log-likelihood is given by
n-1
logg = L 103(1+6T1+1) + log{N-1i)
i=0
(53)
i
- 0 H2 -
(N- i) 2= (7, is1 ¥ 32 11+1 v 2T, kfo lk])

+ terms indapsndent of {N,Q).

The MLEs for N and © t{hus satisfy
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n=l iy 0 (.2 - )
0= LI 5/ - - T + 5 [T, + 27 L T1] (54%)
(- B1 Ry S B T2 Tin B o K
n-1 T, : i-1 a
i+t (N-i)Wy .2
0=t h - (r5,, + 2t :T) (55)
10 1497, 2K i+l i+1 5 'k

These are easily computed by solving (54) for O = ©(N) and substituting into
equation (55) to obtain a single equation for N. This was done using the
Pacific Ocean perch data and it yielded results which indicated that learning

was not a factor in that data set.

An alternate approach for estimating the learning parameter © is a
Bayesian one. Note first that the distribution of catches is a time varying

binomial
N , 0 2
Pr{n catches in search time 1t} = [n] [1—exp[~eo(t iy t ]]o
(56)
[exp{—eo(t + g-tzll
where g, = Wv/A,. Equation (56) can be rewritten as
Prin catches in search time t]
{(57)
= [:} expl-(N-n)e,t] (l-pe_we)n g W(in)o
wnere
~c. .t 2 g
0 t 0
(58)

L&)
it
m
x
n
n
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Now, if a prior distridbution is placed on ©, =zither (56) or (57) can be
viewed &5 conditional quzntities. & versatile choice of prior densities for the

learning parameter i{s the ganmma family

~ad -1 -
v

f(e) = £ 9 o : - {59)

F(v)
with parameters v and «a.

To do the integral of (57) against the gamma density, set
1(0) = J [1-pe 0" ¢ ¥(NI0 £gy 4o (60)

Expanding the term [1-pe-391 anc¢ integrating termwise gives

e
n Kk a
I1(3) = kfo (k] (-0 | PYTT DY ] (61)

- BIOMASS ESTIMATES

The procedurss given in this paper yield an estimate N for the number of

schools or aggregations present and an estimate B for the biomass per school

A
or aggregate. The latter is computed by

- 1 P
BA == _2 Bi (62)
i=1
. . th
where 3, is &n sstimate for the biomass of the | school.
Tne total Diomass 3 is estimated by
3= N 3B (63)
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and the question is then: what cesn one say about the distribution of B8?
Mangel and Beder (1985) used 2 posterior Bayesian distribution on B, computed

. as follows:

. Pri{m < B < m+dm} = I Pr{k aggregates present}
k=1

(64)
Pr[BA - m/k}

The Bayesian confidence intervals for the data on Pacific Ocean perch reported
by Mangesl and Beder are quite large (the 85% confidence level is [3000,36000]
tons and the 90% confidence level is [1000,3800] tons).

An alternate procedure uses Goodman's (1959) formula for the exact variance

of products. According to tnis formula (modified for this special case).

. .. ~y S ~ sﬁ sg st
Var[B] = VEP{N SA} =N n + BA T - “72"""— (65)
where Sg and SE are the usual unbiased estimates for the variances of BA
and N respectively. For the Pacific ocean perch data used by Mangel and Beder
(1985)
BA = 32 tons N = 646
(66)
2 2 ,
SB a 521 SN = 31654 )
Using the data (55) in eguation (45) gives
,‘" - .
' V'¥ar(8) = %925 tcns . (67)
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I .
mean = Yar{3) = [13747, 27597]

mean = 2V Var{2) = [8322, 34522]

Toe form of (68) is chosen to mimic the central limit theorem (although its

(68)

not clear that the theoram appiies here). The limits given by the second -

equation in {68} are remarkably close to the Bayesian ones.

CONCLUSIONS AND DI3CUSSION

This paper represents anothar step towards a general theory of abundance
estimation based on encounter raztes. Furtner work needs to be done in two
general areas: 1) adding varicus oparational effects and 2) including population

dynamics and/or treatment of open populations.

Two operational =ffects which may be important are the effect of school
structure on detection ef schools and non-random search. That is, in visual or
acoustic searcn ths largsr scheols mzy be detected first and this kind of
phenomenon could bz modeled, zlthough it introduces yet another parameter into

the estimation process.

Preliminary analysis of data om tuna in the South Pacific seems to indicate
the following opzralional situation: lishermen locate patches containing schools
of tuna on a relatively randon basis, but the search within the patches is non-
random. This opsrational situztion can be treated by the methods of this paper,

with minor modification and work along those lines is currently in progress.

All the wori in this paper and in Hangel and Beder (1985) assumed a closed
population. Thg population could b2 open for a numder of reasons, for example
emmigralion Zuring the season or birth and death of fish during the season.
There are twd wevs L0 treat such opsa populations. To begin, one can write that

the population at time t, H{t), is given by
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t-1 .
H(t) = B{0) + T bls) - d(s) + i(s) - e(s) (69)
5=0

where b(s) is the number of dirths, d(s) the numbder of deaths, 1i(s) the
number o?_immigrations and e(s) ~the number of emmigrations at time s. One
can then try to estimate each of these parameters separately. Another approach
Is to simply treat N(t) as a random variable. For example, the following
approach is currently under investigation and ﬁay turn out to be quite

appropriate. First, let HN(i) be value of N at the ith detection. Second,

write

N(i) =n + W ‘ (70)

where n is the total numbar of detections in the entire observation periocd and
ﬁ is a random variable. For example, if I has a gamma distribution with

parameters v and «, then the density for the ith detection is given by

e(n-i)ens(nql)t [E%EE]V
(71)
Cae v
N e-e(n-—i)» ] r{v+1)
T{v} (u*ct)vq

and one can try to estimate the parameter set (c,v,a). An even simpler
approacin to the open population is simply to write N(i) = N and ignore

depletion, so tnat conditiored on H(i) the time to the 1Fh detection has

conditional density

{72)
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o’ r{v+1)

. r{v) (0+at)v+1 (73)

The utility of (71) -~ (72) for the study of open populations is currently under
investigation.
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Caption

Figure 1 The 1likelinhood Pn(t, v, @) as a function of ¢ for the POP
data and v = 1, _
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Appendix: Datz Sourges

The data for Paciiic Ocean pzron (Sebastes 2lutus) were given in Mangel and
Beder (1985). T“rney were obtained from log-books provided by Bruce Leaman and
Rick Stanley, Pacific Biological Station, Nanaimo, BC, Canada.

The data for the crested porcupine (Hystrix indica) wers provided by Phil
Alkon, Blaustein Center for Deserti Resesarch, Barsheva, Israel. Thes: data were
obtained directly from trap log-books; the trapping was done for the purpose of
telenetric behavioral studies. Although porcupines were not removed during the
study, because of the radio tagging, recaptured porcupines could be ignored when
trap counts were made.

The data for the Ivory Coast Fisheries were graciously providad by Phillip
Cury who was visiting the Pacific EZnvironmental Group, Honterey, Califeornia.
The data were analyzed, from log-booka, as .=scribed in Cury and Roy (1985a,b).
That is, raw data were not used herz, as in the previous two cases.



